
Generalized depletion potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 L777

(http://iopscience.iop.org/0953-8984/13/33/104)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 14:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) L777–L784 PII: S0953-8984(01)26979-3

LETTER TO THE EDITOR

Generalized depletion potentials

A A Louis1 and R Roth2,3

1 Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
2 H H Wills Physics Laboratory, University of Bristol, Bristol, UK

Received 16 July 2001
Published 2 August 2001
Online at stacks.iop.org/JPhysCM/13/L777

Abstract
We propose that the behaviour of asymmetric binary fluid mixtures with a large
class of attractive or repulsive interparticle interactions can be understood by
mapping onto effective non-additive hard-sphere models. The latter are best
analysed in terms of their underlying depletion potentials which can be exactly
scaled onto known additive ones. By tuning the non-additivity, a wide variety
of attractive or repulsive generalized depletion potential shapes and associated
phase behaviour can be ‘engineered’, leading, for example, to two ways to
stabilize colloidal suspensions by adding smaller particles.

Varying the interactions between the mesoscopic constituent particles in colloidal dis-
persions—examples include proteins, micelles, polymeric composites, ceramic materials etc
in polar or non-polar solvents—results in a broad range of equilibrium and non-equilibrium
fluid behaviour. It is this tunability which has led to the widespread industrial and biological
applications of colloidal suspensions [1]. Some very promising recent experimental advances
allow for an exquisite control over the colloidal interactions, leading, for example, to the design
of complex self-assembled materials such as photonic band-gap crystals by use of templates [2].
Concurrently, new measurement techniques are being developed that directly determine these
interactions with a greatly increased accuracy [3].

Designing colloidal fluids with certain desired properties requires direct control over the
interparticle interactions. These interactions are typically effective, i.e. they are a combination
of direct interactions (such as Coulomb forces) with indirect interactions mediated through the
solvent and the other solute particles [4–6]. One of the best known is the indirect depletion
interaction, where one set of (typically smaller solute or solvent) particles induces an effective
interaction between another set of particles. Depletion potentials were first calculated for
mixtures of polymers and colloids [7] and, with the advent of new experimental and theoretical
techniques, they have been the subject of intensive recent interest [8–12, 14]. In this letter we
show how a generalization of the depletion potential concept leads to new ways to tune and
understand the properties of asymmetric binary colloid mixtures.
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Theoretical work has often focused on the binary hard-sphere (HS) model, for which a
depletion-induced phase separation for size ratios q = σss/σbb < 0.2 was suggested [8] (here
σαα is the diameter of the big (subscript b) or small (subscript s) particles). An important
advance was made by Dijkstra et al [10], who used an effective one-component depletion
potential picture to show that the fluid–fluid phase separation found with a two-component
integral equation technique by Biben and Hansen [8] was metastable w.r.t. a fluid–solid phase
transition. More generally, their approach added to the growing consensus that a carefully
derived effective pair potential is a powerful tool for analysing the behaviour of an asymmetric
binary mixture, at least for size ratios q � 0.3 where many-body interactions are not thought
to be important (see e.g. [4–6] for some recent reviews). The key step in all these approaches
is integrating out the smaller component of a binary mixture to leave a new one-component
system with an effective interaction between the big particles.

Most theories of depletion have considered only hard-core interactions leading to purely
entropic depletion potentials. Their range varies with σss, while increasing the small-particle
density ρs or packing fraction ηs = πρsσ

3
ss/6 increases the depth of the (always) attractive well

at contact, and possibly adds enhanced oscillations at larger separations r [7, 9, 14].
There have been a number of recent attempts to go beyond purely entropic depletion by

including extra interactions between the particles of a binary HS mixture [15–19]. Of course
many different kinds of extra interaction can be added, leading to a seemingly enormous
increase in complexity. However, in this letter we propose that the effect of a wide variety of
these extra interactions on depletion potentials can be understood by a simple mapping onto a
non-additive HS mixture model, for which the depletion potentials can be calculated by a second
exact mapping or scaling onto those of an additive system, which are well understood [14].

The phase behaviour of many asymmetric binary fluids (with independent components)
can be understood on the basis of these depletion potentials [4–6, 10, 11], which then implies
that our (double) mapping can be used to analyse a wide variety of interacting asymmetric
binary mixtures4. These ideas can also be turned around, leading to the possibility of explicitly
engineering a wide variety of generalized depletion potential shapes, including potentials that
are repulsive at contact by tuning the interparticle interactions to vary the non-additivity.

Non-additive binary HS models are defined by specifying the cross-diameter [21]

σbs = 1

2
(σss + σbb)(1 + �). (1)

When � = 0, the model follows the Lorentz mixing rule, and is traditionally called additive
(not to be confused with pairwise additivity of potentials); that is, the cross-diameter is simply
the sum of the two radii, exactly what one would expect on purely geometric grounds. If
� > 0 or � < 0 the system shows positive or negative non-additivity respectively. As
shown in figure 1, each big particle excludes a volume vb = πσ 3

bs/6 from the centres of
the smaller particles. When the depletion layers of the two big particles (width defined as
l = σbs − σbb/2 = 1

2 (σss + �(σss + σbb))) begin to overlap, then the small particles can gain
free volume v�, leading to a depletion interaction.

To calculate these potentials we first note that the depletion potential βVeff (r) depends
only on the big–small and small–small interactions (βVbs(r) and βVss(r) respectively), but
not on any direct big–big interaction βVbb(r), which can simply be added to the depletion
potential [6, 14]. For non-additive systems at fixed ρs this means that the depletion potential
is determined by σbs and σss, and is equivalent to an additive one with the same parameters!

4 We restrict ourselves here to mesoscopic binary colloidal mixtures where the so-called volume terms do not
contribute to the phase behaviour [10]. If one were instead to integrate out the microscopic co- and counter-ions, this
might lead to volume terms which affect phase behaviour.
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Figure 1. Centres of the small particles of diameter σss are excluded from the shaded depletion
layer of width l around each big particle of diameter σbb. If l < 1

2σss then � < 0 (negative
non-additivity). If l > 1

2σss, then � > 0 (positive non-additivity).

Only the cut-off due to σbb is different. For example, if one has an expression for the additive
potential in terms of ρb, q and the scaled distance p = r/σbb, then a potential with � �= 0 is
given by

βVeff (ρs, q,�, p) = βVeff (ρs, q
′,� = 0, (q ′/q)p)

where q ′ = σss/(2σbs − σss/2). Details of this (perhaps surprising) exact mapping by scaling
to additive potentials will be given elsewhere [22]. The depletion potentials for additive
systems can be calculated to quantitative accuracy by a density functional theory (DFT)
technique [14], and we checked that the scaling procedure above exactly reproduces recent
direct DFT calculations of non-additive depletion potentials [20].

For a fixed number density ρs, non-additivity can be introduced in two ways:

• Case (A). Fix the depletion layer width l (or equivalently σbs), and vary � by changing
the small-particle diameter σss. The effect on depletion pair potentials βVeff (r) is shown
in figure 2. For increasing positive non-additivity the correlation-induced maximum
decreases and the potential tends towards the (ideal) Asakura–Oosawa (AO) [7] limit;
the contact value remains relatively constant, as was found earlier [20]. In contrast,
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Figure 2. Depletion potentials when parameters are changed according to case (A), i.e. varying
σss but keeping l constant. Here q = 0.2, and 4πρsl

3/3 = 0.1. The potentials are calculated by an
exact scaling from known additive DFT results [14].
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for increasing negative non-additivity the contact value increases markedly, leading to the
possibility of strongly repulsive interactions. A naive application of the simplest depletion
picture where βVeff (r = σbb) = −�sv� would give the opposite effect, since decreasing
� by increasing σss increases the packing fraction ηs = πρsσ

3
ss/6 and therefore the small-

particle osmotic pressure �s, while keeping v� unchanged, seemingly leading to a more
attractive effective potential. However, a more careful analysis reveals that increasing
ηs leads to well-developed solvation shells around a single big particle. When two big
particles approach, the overlap of the solvation shells leads to the repulsive interactions,
as well as larger oscillations in the pair potentials. We found that the amplitude of this
repulsion becomes larger for smaller size ratios, with values possible of many times kBT .

• Case (B). Fix the small-particle hard-core diameter σss, and vary � by changing l (or
equivalently σbs). The dominant effect on depletion pair potentials is to shift them along r
as shown in figure 3. In this case both positive and negative non-additivity change the well
depth at contact significantly because changing l changes the amount of volume doubly
excluded when two big particles approach. This can be understood even at the simple AO
level where the potential at contact is given by [6]

βVAO(r = σbb) = −ρs
π

4

(
σbb(2l)

2 +
2

3
(2l)3

)
. (2)

On the other hand, the correlation-induced maximum remains roughly the same since ηs

is constant, leading to similar solvation layers of the small particles around a big particle.
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Figure 3. Depletion potentials when parameters are changed according to case (B), i.e. varying l

but keeping σss constant. Here q = 0.2, ηs = 0.2 and line styles denote the same �-values as in
figure 2. Inset: depletion potentials when βVbs(r) = ε exp[−κ(r − σbs)]/r is added to a binary
HS mixture are compared to the non-additive HS case with � calculated by our simple mapping.
Here ηs = 0.116, q = 0.2, κσss = 4 is fixed and βε is varied. The simulation data for βε = −0.32
included [17] help confirm the accuracy of our new direct DFT approach.

With the insight gained from analysing non-additive depletion potentials, we next pose the
question: what happens toβVeff (r) for a given binary HS mixture when more general attractive
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or repulsive interactions βVss(r) or Vbs(r) are added? Inspired by some well-established ideas
from the theory of simple liquids [21], we map onto effective HS diameters as follows:

σαβ = σ 0
αβ +

∫
(exp[−βVαβ(r)] − 1) dr

which is a procedure similar to the well-known Barker–Henderson approach [23]. Here σ 0
αβ

denotes the original effective HS diameters without the extra interaction. In this way the
additional interactions can be mapped onto an effective non-additive HS model as follows:

(i) repulsive βVss(r): σbs = σ 0
bs; σss > σ 0

ss; � < 0;
(ii) attractive βVss(r): σbs = σ 0

bs; σss < σ 0
ss; � > 0;

(iii) repulsive βVbs(r): σbs > σ 0
bs; σss = σ 0

ss; � > 0;
(iv) attractive βVbs(r): σbs < σ 0

bs; σss = σ 0
ss; � < 0.

The depletion potentials for (i) (� < 0) and (ii) (� > 0) change according to case (A),
which is depicted in figure 2, while the depletion potentials for (iii) (� > 0) and (iv) (� < 0)
change according to case (B), as depicted in figure 3. This picture agrees qualitatively with
calculations of other authors of depletion potentials for non-HS systems. Examples of the
pathways above include: (i) figure 4 of [19]; (ii) figure 8 of [16], figure 4 of [4]; (iii) figure 5
of [15]; figure 3 of [16] (see also [24] for a recent experimental and [25] for a recent theoretical
mapping of this type of interaction onto an AO potential); (iv) figure 4 of [16], figure 4 of [17],
figure 7 of [18], and figure 4 of [4]. Keep in mind, however, that these calculations were done
with a number of approximate techniques which may not always give quantitatively reliable
results, especially for contact values [6]5. Even so, with the possible exception of case (ii)
our scheme of mapping to non-additivity qualitatively rationalizes the dominant changes in
depletion potentials caused by changing a variety of interparticle interactions.

It would be interesting to make this qualitative correspondence more quantitative. We
were able to extend the quantitatively reliable DFT method described in [14] to systems with
an arbitrary potential Vbs(r) (details will be published elsewhere). In the inset of figure 3
we compare these to non-additive HS potentials with � determined by our aforementioned
mapping procedure. This gives a good representation of the well depth, but does slightly less
well for the repulsive barrier. With our very simple mapping procedure, we expect that the
quantitative agreement will deteriorate for very strongly attractive Vbs(r) or Vss(r), but the
qualitative picture should remain the same6.

From the above it is clear that non-additivity has a profound effect on depletion potentials,
implying that this should also be reflected in phase behaviour. For more symmetric mixtures the
effect of interparticle interactions on phase stability has traditionally been understood in terms
of conformal-solution theory [21]. Our depletion potential arguments help generalize these
ideas to very asymmetric mixtures, as will be illustrated below. For example, Vliegenthart
and Lekkerkerker [26] have recently shown that the fluid–fluid phase transition in many one-
component fluids occurs when the reduced second virial coefficient B2/B

HS
2 < −1.5. We

checked that this works well for the depletion potential simulations of Dijkstra et al [10, 11],
suggesting that this surprisingly accurate criterion can also be used to predict the effect of
non-additivity on fluid–fluid phase separation. In figure 4 we plot the effect of ηs on the
second virial coefficients calculated from depletion potentials. For the additive case we
find that B2/B

HS
2 < −1.5 only for size ratios q < 0.11 (for q = 0.1 there might be an

5 Recent simulations [13] have shown that case (ii) is especially hard to model theoretically, with results which do
not always fit into our mapping scheme. This is being actively explored at present.
6 Again, recent simulations [13] show that the mapping is no longer quantitative for large interactions, especially
when they are attractive (cases (ii) and (iv)).
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Figure 4. Reduced second virial coefficient of the big particles,B2/B
HS
2 , plotted versus the packing

fraction of the small particles, ηs. Fluid–fluid phase separation is expected when B2/B
HS
2 < −1.5

[26] (horizontal line).

upper critical point!) But even without attributing quantitative accuracy to the Vliegenthart–
Lekkerkerker criterion, the upper limit of q that allows fluid–fluid phase separation is clearly
bounded by 0.1 � q � 0.2, since B2/B

HS
2 remains positive for any ηs if q > 0.2, while

it goes well below −1.5 for q < 0.1. This finding helps in understanding earlier results
obtained with (approximate) two-component integral equation studies [8] as well as some direct
simulations [12], lending support to our argument that the underlying depletion potentials from
which the values of B2 are derived are a key to understanding the full phase behaviour of the
asymmetric two-component systems.

Next we turn to the effect of non-additivity on the fluid–fluid phase separation. Figure 4
shows that for q = 0.1 a very small non-additivity, of the order of a 5% change in σss or a 0.5%
change in σbs, is enough to dramatically change the behaviour ofB2/B

HS
2 . For other size ratios

we find similar effects. For example if � = q/20 we find that (metastable) fluid–fluid phase
separation can occur for size ratios up to q = 0.4, while if � = −q/20, it will only occur for
size ratios q < 0.05. Clearly, even a very small negative non-additivity strongly suppresses
phase separation, while positive non-additivity strongly enhances it. This is consistent with
and helps rationalize some earlier two-component studies [27–29].

Binary mixtures may also undergo fluid–solid phase separation which, for example, is
the thermodynamically stable phase transition in additive HS mixtures [10]. Recently, one of
us [6,29] has shown that for short-range potentials the fluid–solid transition shifts to low values
of ηb = πρbσ

3
bb/6 when the potential well depth at contact is near βVeff (r = σbb) ≈ −2.5; this

effect is largely independent of other details such as the range or oscillations of the potential.
This suggests that introducing any non-additivity according to case (B) will strongly affect
the fluid–solid behaviour. Similarly, adding negative non-additivity according to case (A) will
suppress fluid–solid phase separation, but positive non-additivity will not change the fluid–
solid phase boundaries much, a prediction that is confirmed by comparing the additive (� = 0)
HS to pure AO (q = �) simulations of Dijkstra et al [10, 11].

The stabilization of colloidal suspensions is critical to many industrial and experimental
applications [1]. The arguments above for both fluid–fluid and fluid–solid phase separation
suggest that the addition of smaller particles may provide such a stabilization mechanism
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against demixing for colloidal suspensions as long as � < 0. This can be achieved by
pathway (i), adding a repulsive Vss(r), or by pathway (iv), adding an attractive Vbs(r).

In conclusion then, we combined a new approximate and a new exact mapping to show that
the non-additive HS mixture model provides an intuitive and general organizing framework
within which to understand the effective depletion potentials induced by a large class of
interactions Vbs(r) or Vss(r). These generalized depletion potentials can be crafted into many
different shapes, and provide access to the phase behaviour of interacting asymmetric binary
mixtures. Clearly much more can be done by both theories and experiments to exploit the
flexibility of these potentials and to ‘engineer’ desired phase behaviour in colloidal suspensions.
We hope that this letter has shown some promising new directions in which to embark.

AAL acknowledges support from the Isaac Newton Trust, Cambridge, RR acknowledges
support from the EPSRC under grant No GR/L89013. We thank R Evans and J-P Hansen for
helpful discussions.
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[13] Louis A A, Allahyarov E, Löwen H and Roth R 2001 unpublished
[14] Roth R, Evans R and Dietrich S 2000 Phys. Rev. E 62 5360
[15] Walz J Y and Sharma A 1994 J. Colloid Interface Sci. 168 485
[16] Amokrane S 1998 J. Chem. Phys. 108 7459
[17] Malherbe J and Amokrane S 1999 Mol. Phys. 97 677
[18] Clement-Cottuz J, Amokrane A and Regnaut C 2000 Phys. Rev. E 61 1692
[19] Méndez-Alcaraz J M and Klein R 2000 Phys. Rev. E 61 4095
[20] Roth R and Evans R 2001 Europhys. Lett. 53 271
[21] Hansen J-P and McDonald I R 1986 Theory of Simple Liquids 2nd edn (London: Academic)
[22] Roth R Evans R and Louis A A 2001 Preprint cond-mat/0105547



L784 Letter to the Editor

[23] Barker J A and Henderson D 1967 J. Chem. Phys. 47 4714
[24] Mondain-Monval et al 1995 Phys. Rev. Lett. 75 3364
[25] Piech M and Walz J Y 2000 Langmuir 16 7895
[26] Vliegenthart G A and Lekkerkerker H N W 2000 J. Chem. Phys. 112 5364
[27] Biben T and Hansen J-P 1997 Physica A 235 142
[28] Dijkstra M 1998 Phys. Rev. E 58 7523
[29] Louis A A, Finken R and Hansen J-P 2000 Phys. Rev. E 61 R1028


